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Abstract—We propose a framework for Threat Image Pro-
jection (TIP) in cargo transmission X-ray imagery. The method
exploits the approximately multiplicative nature of X-ray imagery
to extract a library of threat items. These items can then be
projected into real cargo. We show using experimental data
that there is no significant qualitative or quantitative difference
between real threat images and TIP images. We also describe
methods for adding realistic variation to TIP images in order
to robustify Machine Learning (ML) based algorithms trained
on TIP. These variations are derived from cargo X-ray image
formation, and include: (i) translations; (ii) magnification; (iii)
rotations; (iv) noise; (v) illumination; (vi) volume and density;
and (vii) obscuration. These methods are particularly relevant
for representation learning, since it allows the system to learn
features that are invariant to these variations. The framework
also allows efficient addition of new or emerging threats to a
detection system, which is important if time is critical.

We have applied the framework to training ML-based cargo
algorithms for (i) detection of loads (empty verification), (ii)
detection of concealed cars (ii) detection of Small Metallic Threats
(SMTs). TIP also enables algorithm testing under controlled
conditions, allowing one to gain a deeper understanding of
performance. Whilst we have focused on robustifying ML-based
threat detectors, our TIP method can also be used to train and
robustify human threat detectors as is done in cabin baggage
screening.

I. INTRODUCTION

A major challenge for obtaining high human performance
at visual screening tasks, such as detecting Small Metallic
Threats (SMTs) in X-ray baggage scans, is the rarity of real
threats. Studies have shown that humans perform much better
in terms of detection and false alarm rates if threat items have
high prevalence [1]. This prompted research into Threat Image
Projection (TIP) techniques, mostly in Cabin Baggage Screen-
ing (CBS), whereby threat items are realistically projected
into baggage imagery to increase threat prevalence during live
screening operations. TIP is also used in Computer Based
Training (CBT) [2, 3], and for evaluating operator performance
and vigilance [4].

Most TIP methods insert Fictional Threat Items (FTI)
from a threat database into the image [5]. Researchers have
focused on determining realistic placement locations (voids)
in baggage and generating threat noise and artefacts that are
consistent with the rest of the baggage [6–8], so as to reduce
visual cues for operators. To our knowledge there have been
no academic publications on TIP methods for cargo. Authors

have commented on possible cues caused by superposition-
based TIP methods for single-view X-ray baggage [8]. We
follow a similar superposition approach, but demonstrate,
experimentally, that it does not lead to any obvious visual
cues.

Researchers also face a similar threat prevalence issue when
training Machine Learning (ML) based Automated Threat
Detection (ATD) algorithms. There is often a large imbalance
between the innocuous and threat classes. This often leads to
learning algorithms that are biased towards the innocuous class
and therefore detection performance on the threat class suffers.
This observation is similar, and possibly analogous, to the one
found in humans. Class imbalance can also affect performance
evaluation, particularly accuracy measures, in what is known
as the “accuracy paradox” [9].

To remedy the class imbalance problem, researchers often
consider: (i) dataset re-sampling [10, 11]; (ii) reformulating
the problem as one-class [12]; (iii) adjusting the algorithm cost
function [13]; or (iv) generating or collecting more data. Re-
cently, with the development of end-to-end ML methods such
as Convolutional Neural Networks (CNNs), which require very
large amounts of training data, dataset augmentation [14, 15]
has become increasingly the focus of attention. In dataset
augmentation, class-preserving transformations are made to
existing training data to expose the ML algorithm to natural
variation, which reduces overfitting and improves generalisa-
tion to unseen examples. Such transformations often include
rotations, translations, reflections, and changes in illumination
and noise.

In cargo screening, we are faced with a major class im-
balance problem since threats are extremely rare in the wild.
It is also expensive and time consuming to collect large
numbers of realistic staged threat examples. To this end, we
have developed a TIP framework for cargo. The framework
allows generation of realistic synthetic threat images and the
injection of realistic variation derived from the characteristics
of X-ray cargo image formation. These variations include:
(i) translations; (ii) rotations; (iii) pixel noise; (iv) magnifi-
cation; (v) illumination; (vi) volume and density; and (vii)
obscuration. Whilst TIP is beneficial in training ML-based
algorithms, it is also useful for gaining a deeper understanding
of algorithm performance by controlling particular aspects
in testing. We evaluate the threat extraction and projection
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Fig. 1. Illustration of TIP used in validation. Three images were captured
of: (i) cargo only (C); (ii) threat (and support structures) only (T ); and (iii)
threat and cargo (TC). The background was removed from T by dividing by
a background estimate leaving the threat attenuation mask. The threat was
then projected onto C by multiplication. For evaluation the TIP image can be
compared to the treat threat image TC. Note that the threat support structures
have been included as threat in this experiment, but would be removed in
practice.

method on experimental data, and give examples of use cases
in training ML-based detectors for cargo imagery.

II. THREAT ITEM EXTRACTION AND PROJECTION

We assume that X-ray image formation obeys the Beer-
Lambert rule so that the pixel value Ixy at image location {x,y}
is given by

Ixy = I0 exp
(
−
∫

µxy(z)dz
)
, (1)

where I0 is the beam intensity, x are horizontal image coordi-
nates, y are vertical image coordinates, z are depth coordinates,
and µ is the affective attenuation coefficient of the objects
composing the scene.

The pixel value can be split into contributions from the
threat T and its background B

Ixy = I0 exp
(
−
∫

T
µxy(z)dz

)
exp
(
−
∫

B
µxy(z)dz

)
,

= I0TxyBxy, (2)

Therefore by estimating I0Bxy, one can estimate the threat
mask Txy∈[0,1]. The threat mask can then be projected into
X-ray images by multiplication.

Unlike TIP for baggage Computed Tomography (CT), one
does not have to compute plausible threat locations, except in
the case that the threat occupies a very large container volume.
Threat extraction and projection is shown in Fig. 1. In this case
the background is approximated by averaging across columns
in a small image patch directly above the threat. This simple
approach is possible due to the uniform appearance of the
container in the image verticals. In more complicated cases,
the threat and other structures can be manually delineated
before background division.

It is important that TIP imagery is realistic, in particular
the TIP process should not generate any cues that may be
learnt by a ML algorithm, especially if testing is performed
on TIP imagery. To this end, the TIP method was validated
experimentally, using a Rapiscan R©Eagle M60 operating in
interlaced dual-energy mode using Bremsstrahlung X-rays
with 4MeV and 6MeV cut-offs for low and high energy,

Natural variation TIP error

29.1 dB 29.6 dB

Fig. 3. Comparison of natural system variation (left) with TIP pixel errors
(right). Natural variation was computed as the deviation between repeat scans
of identical cargo and threat (TC). TIP error was computed as the deviation
between the TIP image and a TC image. Images show these deviations,
rescaled, so that they are visible. Histograms show distribution of deviations.
For each case, the Peak Signal-to-Noise Ratio (PSNR) is given in decibels
(dB). TIP does not lead to large errors relative to natural image variation and
does not change the distribution of deviations.

respectively. We scanned containers, containing: (i) threat only
(T ); (ii) threat and other cargo (TC); and (iii) other cargo
only (C). Industrial tools (pipe wrench, electric drill, pipe
bender) were used as threat models and plastic cylinders and
hula-hoops were used to support the threats in place. For the
purposes of this experiment, we have included the support
structures as part of the threat.

Threats were extracted from the T images and projected
onto C images to create TIP image. Visual comparison of TIP
images and TC images (Fig. 2) shows that TIP is realistic; one
would not be able to distinguish which image is real and which
is TIP without being told. Furthermore, the TIP error can be
quantified by measuring the deviation between the TIP image
and the TC image and compared to natural system variation.
We estimate natural variation by taking the deviation of repeat
TC scans. In both cases we can also study the distribution of
deviations in a histogram and compute the Peak Signal-to-
Noise Ratio (PSNR). This is shown in Fig. 3. We observe that
TIP does not give rise to large errors relative to natural image
variation (TIP error is less than natural variation in this case),
and that the errors, in distribution and spatial arrangement,
are very similar to natural variation. In addition, there are no
obvious visual cues generated from the TIP process.

III. INJECTION OF REALISTIC VARIATION

We can inject variation into the threat appearance, using
transformations that preserve the class of the threat. These
transformations can be derived by considering the nature of X-
ray image formation. Here we discuss several different types
of transformations applicable to X-ray cargo imagery.



ACCEP
TE

D

R
ea
l

T
IP

H L H L

Fig. 2. Qualitative comparison of real threat images (top) and TIP images (bottom) for high (H) and low (L) energies. Industrial tools (pipe wrench, electric
drill, pipe bender) have been used as a threat model. The images correspond to raw captured data and no additional processing (e.g. denoising) has been
applied.

A. Translations

Translation variation can be injected either by controlling
the threat insertion position (Fig. 4), or by oversampling the
threat item. Oversampling, samples multiple windows that
overlap the threat, but with a small displacement. It is similar
to random crops, which been used in the wider machine vision
community [14] to encourage learning of small translation
invariant features and to achieve class balance. However, TIP
also allows us to vary larger scale placement of the threat (e.g.
within a cargo container). It is possible to obtain full coverage
of possible threat locations within the container.

Whilst TIP enables manipulation of threat placement, it also
provides groundtruth labels for the threat ROI within an image.
Such labels are essential for training and testing detection
algorithms, and avoids the inconvenience of manually labeling
threat regions of interest.

B. Magnification

In X-ray cargo scanners, the fan-beam geometry means that
photon paths are divergent, rather than parallel, and so the
appearance of an object varies as a function of the distance
from the source. When the object is close to the source it
appears taller in the image than when it is placed further
away. Therefore there is a natural variation in the vertical
magnification of the object depending on its location. We
approximate the magnification scale by

α = 1+d
(

l f

ln
−1
)
, (3)

where d ∈ [0,1] is the distance away from the source nor-
malised by container depth, ln and l f are the vertical lengths
(in pixels) of the same object placed at nearest and furthest
container wall from the source, respectively. The container

walls, themselves, can be used to measure ln/l f for a partic-
ular system. The parameter d can sampled randomly when
generating TIP examples for algorithm training.

Magnification verification is demonstrated in Fig. 4 (left).

C. Rotations

A 3D rotation of a threat, has a corresponding 2D image
appearance transformation, which is non-trivial to determine,
particularly for out-of-plane rotations. However, in-plane rota-
tions can be approximated by rotating the threat image in 2D.
Adding random 2D rotations to threats during training encour-
ages the learning of rotation-invariant features. Rotations are
demonstrated in Fig. 4 (left).

D. Noise

Cargo X-ray images are mostly affected by: (i) salt-and-
pepper noise possibly from bit errors, dead pixels, or analogue-
to-digital conversion; and (ii) Poisson noise originating from
the number of photons emitted [16]. Both types of noise can
be added to TIP imagery for training ML-based algorithms,
so that they can become robust to such noise. It is particularly
useful to vary the noise on a threat item that is used multiple
times in training.

E. Illumination

The illumination (mean number of X-ray photons emitted)
can vary for different images due to slight differences between
scanners. Illumination can also vary within images due to
detector wobble in mobile configurations or due to X-ray
source fluctuations [16].

We inject illumination variation into training data, by
scaling the intensity of an image by some random factor
(typically 1±0.05). Variation due to source fluctuation is often
removed in an image preprocessing step, but if required can be
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Fig. 4. Illustration of variation injection for TIP into an empty cargo container. A pipe wrench has been used as a threat model. On the left of container, and
going bottom-top, the vertical dimension of the wrench has been stretched (magnified) to represent appearance variation as it is positioned at varying distances
form the source. Going left-right, the wrench is being translated and rotated anti-clockwise. On the right of the container, the wrench has been obscured by
different database objects before insertion into the container. The red lines indicate the location of the wrench.

generated by scaling the intensity of individual image columns
by factors sampled randomly from a normal distribution.

Illumination variation due to detector wobble is more dif-
ficult to generate, as it varies as a function of image x
and y coordinates. However, one could assume wobble is
sinusoidal in x, and determine illumination variation in y by
the intersection of the detector array with the Gaussian cross-
section of the fan-beam. This is essentially the reverse process
to wobble correction in Ref. [16], but with wobble randomly
generated rather than estimated.

F. Volume and density

In some cases, volume transformations leave the threat class
intact, for example with bulk powder or liquid narcotics. This
is often not the case for weapons, where a shrunk sniper
rifle does not look like a typical hand-held gun and possibly
more like a toy. The relationship between volume and image
appearance can be approximated by considering the Beer-
Lambert law in Eq. 1. Scaling the volume V equally in
each dimension by some factor ν (V → ν3V ) leads to the
transformation

Txy→ (Tx′y′)
v (4)

on the the threat mask. The new in-plane coordinate system
{x′y′} has also been scaled by v in each dimension. When the
volume decreases, the occupied image-area decreases and the
threat simultaneously becomes brighter (less attenuating).

In even rarer cases it is useful to scale the density of the
threat, such as when detecting container loads as a means
of empty verification [17]. Adding density variations during
training makes the algorithm more robust to the possible
range of load densities. Scaling the density by p (ρ → pρ)
approximately transforms the threat as

Txy→ (Txy)
p. (5)

G. Obscuration

When smuggling threats, criminals often attempt to obscure
the threat with benign items to confuse inspectors when
performing physical or image-based searches. obscuration can

include (i) shielding by thick/dense materials so that the threat
is barely visible in the image, or (ii) concealing the threat
within complex, textured, cargo to make the resultant image
very confusing. It is important that ML-based algorithms are
exposed to such cases during training, as much as it is for a
human. To achieve this one can project threats onto a very
diverse range of real Stream-of-Commerce (SoC) images, or
can use a database of extracted cargoes to project onto threat
items during TIP. The later approach is demonstrated in Fig. 4
(right).

Controlling the attenuation and complexity of obscuration
can be useful in both training and testing algorithms. For ex-
ample, it can be ineffective to train an algorithm on threats that
are so heavily attenuated that there is almost no information
about the threat left. Additionally, one might identify that
an algorithm is poor at distinguishing threats under certain
obscuration complexities, and may want to encourage the
algorithm to perform better in these cases by including more
of them in the training data. The mean and variance of the
obscuring attenuation may be suitable measures of difficulty,
however we have not fully investigated this. Schwaninger et
al. [18] have introduced similar metrics in baggage, which
may be applicable.

IV. USE CASES

In our previous work on cargo, we have proposed algorithms
for: (i) detection of loads (empty verification) [17, 19]; (ii)
detection of concealed cars [20, 21]; and (iii) detection of
“small metallic threats” (SMTs) [19, 22]. We have used aspects
of out TIP framework for training and/or testing in each case.
We here, give a brief overview of the algorithms and how TIP
was employed.

A. Load detection (empty verification)

Load detection was achieved by using a Random Forest
(RF) of decision trees to classify image windows based on
their coordinates, intensity moments, and oriented Basic Image
Features (oBIF) histograms at multiple scales [17]. The algo-
rithm was trained purely on TIP imagery and tested on both
real SoC data and TIP imagery. Variation was injected into the
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TIP training data using random flips and translations, whilst
manipulating the volume and density of the loads (threats).
To further increase variation, composite loads were created
by combining up to five loads randomly selected from the
database. The TIP framework is also beneficial because it is
possible to sample image windows that definitely contain load,
rather than having to manually delineate the loads in the SoC
dataset.

When tested on the SoC dataset, the TIP-trained system
achieves state-of-the-art performance, which is evidence that
it is possible to train an algorithm purely on TIP imagery
but generalise well to real imagery. TIP also allows one to
gain a deeper understanding of this performance. For example,
performance can be measured as a function of the position
of the TIP load within the container, or as a function of the
volume and density of the load. For the later, one can, for
example, fix the TIP density to that of cocaine, and vary the
TIP volume to measure performance at different masses of
cocaine. The former is demonstrated in Fig. 5, which shows the
false positives (incorrectly classified as load-containing) and
false negatives (incorrectly classified as empty) as a function
window position within the image. Analysing performance
with TIP in this way shows that the performance is lower when
loads are place in the top corners of the container, or when
placed on the dark floor region. Such findings can be useful
in the practical implementation of the system, for example
the operator can be given a confidence rating that the image
contains an adversarial load, which can be tuned by position. It
can also be used to inject more samples from difficult positions
in the training data so that improvements in those cases can
be made.

B. Car detection

The car detection algorithm [20] is based on a very deep
19-layer CNN [23] with 16 convolutional layers and 3 fully-
connected layers. Network training was performed on stream-
of-commerce X-ray cargo images. Car windows were over-
sampled to create balanced car and non-car training sets.
Window oversampling, is similar to random crops used in data
augmentation, and can reduce CNN overfitting by encouraging
the CNN to become robust to small translations.

The algorithm was tested on real data, however the TIP
framework allows one to gain a deeper understanding of per-
formance. For a particular test image, the level of obscuration
on the car can be manipulated by randomly inserting database
cargoes using TIP. One can measure the level of obscuration
by taking the Mean Relative Attenuation (MRA), which we
define as

MRA = Mean
[

raw image−TIP image
raw image

]
(6)

= 1−Mean [T ] , (7)

where T is the threat attenuation mask as in Eq. 2
By measuring the classification score as a function obscu-

ration, one can determine the point at which the detector
would fail under adversarial obscuration. Fig. 6 shows the

Fig. 5. Heat maps of false negatives (top) and false positives (bottom) as
a function of {x,y} position for loads similar to 1L of water. The mean
across cargo container images (middle) is included for position reference.
The majority of misclassified windows are placed at the top corners of the
container where it is more difficult for the classifier to distinguish background
from small load.

classification score as a function of MRA. Cars are detected
up until MRA∼0.85, from which point the detector begins
to misclassify them as non-car. For MRA>0.95, the classifier
misses all cars, and it is indeed difficult for humans, even, to
distinguish the car.

C. SMT detection

Smuggled SMTs1 pose a severe and persistent security
threat. The development of automated detection approaches
is thus critical for border and security agencies. However, the
detection of SMTs in images is extremely challenging, both for
security officers and algorithms: SMTs are small relative to the
dimensions of X-ray cargo images, are easily concealed within
legitimate cargo, are visually very similar to other load, and
can be positioned in any pose. In order to train ML algorithms
for the detection of SMTs, it is therefore necessary to use
suitably large and diverse datasets. However, more so than
other type of threats, SMTs are extremely rare in SoC images,
and the staging of smuggling events for image acquisition is
extremely challenging. As such, dataset augmentation through
TIP is critical to the development of high performing SMT
detection algorithms.

We have trained a 19-layer CNN for the detection of
SMTs [19, 22]. Training is performed purely on TIP imagery.
Variation is injected into the training set by projecting threats

1Note that we use the term ‘Small Metallic Threats’ (SMTs) to prevent
the results being easily discoverable by keyword searching, but the objects in
question are similar in appearance to industrial tools e.g. a hand drill.
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Fig. 6. The car detection score from CNN-based car classifier as a function
of Mean Relative Attenuation (MRA) as the car is increasingly obscured
using TIP. Green (red) dots indicate obscured examples that are correctly
(incorrectly) classified as car. Thumbnails show the obscured car examples
for varying MRA. Cars begin to be misclassified for MRA>0.85, at which
point it is very difficult even for humans. [20]

onto a very large number of real background cargoes, with
random vertical and horizontal flips, and random intensity (il-
lumination) scaling. Initial findings suggest that this approach
results in promising performance, potentially rivaling Human
operators for a fraction of the typical inspection time. Further
work will be required to determine the optimal size of the
threat library and to assess whether further addition of realistic
variation, such as out-of-plane rotation interpolation, would
improve performance further.

V. CONCLUSION

Training and testing Machine Learning (ML) based Au-
tomated Threat Detection (ATD) algorithms is complicated
by the difficulty of obtaining large datasets and the major
imbalance between the threat and innocuous classes. We
propose a Threat Image Projection (TIP) framework to remedy
this problem. The framework can be used to generate a very
large number of training examples by adding realistic, random,
variation during projection, including: (i) translations; (ii)
magnification; (iii) rotations; (iv) noise; (v) illumination; (vi)
volume and density; and (vii) obscuration. This framework
allows generation of very large numbers of unique training
images from a few images captured of a threat, thus enabling
rapid addition of detection capability for emerging threats. In
addition, it also allows one to form a deeper understanding of
algorithm performance by carefully controlling aspects of the
test data such as threat position or obscuration.

The threat extraction and projection methods were validated
on experimental data and showed no significant qualitative or
quantitative difference between TIP imagery and real threat
imagery. In particular, there was no evidence that the TIP
process created additional visual cues that could be exploited

by humans or ML algorithms. We have presented three ex-
ample use cases for TIP in automated cargo image analysis:
(i) training and controlled testing of a load detector (empty
verification); (ii) controlled testing of a car detector under
increasing levels of adversarial obscuration; and (iii) training
and testing a Small Metallic Threat (SMT) detector.

Future work will go towards verifying that classifiers trained
purely on TIP imagery perform equally to those trained on
purely real data. We will also investigate using 3D Computer-
Aided Design (CAD) models [24], or Computed Tomography
(CT) scans, of threats as a basis for generate realistic synthetic
radiographs which can be used in TIP, and whether they
can improve the performance of ML-based algorithms. This
could also solve the problem of generating out-of-plane threat
rotations and improve the speed with which new threats can
be added to the detection capabilities of an ATD system.

Finally, whilst we have focused on training and testing ML-
based threat detectors, we feel this TIP framework is equally
applicable to training and evaluating human operators.
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