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Abstract

Existing approaches to automated security image analysis focus on the detection
of particular classes of threat. However, this mode of inspection is ineffectual
when dealing with mature classes of threat, for which adversaries have refined
effective concealment techniques. Furthermore, these methods may be unable
to detect potential threats that have never been seen before. Therefore, in this
paper, we investigate an anomaly detection framework, at X-ray image patch-
level, based on: (i) image representations, and (ii) the detection of anomalies
relative to those representations. We present encouraging preliminary results,
using representations learnt using convolutional neural networks, as well as sev-
eral contributions to a general-purpose anomaly detection algorithm based on
decision-tree learning.

Keywords: Anomaly detection; representation-learning; machine learning;
cargo screening; X-ray imaging; security imaging

1. Introduction

Non-intrusive inspection systems are increasingly used to scan intermodal freight
shipping containers, at national ports, to ensure cargo conformity with customs
regulations. Initially, each container is risk assessed based on shipping infor-
mation such as origin, destination, and manifest [9, 29]. If the risk is deemed
sufficiently high the container is imaged, typically by non-intrusive X-ray radio-
graphy. Finally, on the basis of the X-ray image, a human operator must make a
decision, as to whether a container then necessitates physical inspection.
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These processes aim to minimise the number of false searches, whilst maximis-
ing the number of true searches, thus facilitating the detection of suspicious
cargoes with negligible interference to the flow of commerce. However, due to
the large number of containers being transported yearly, the number of X-ray
transmission images to be visually inspected remains high. Moreover, the het-
erogeneity within and between the X-ray images provides an appreciable visual
challenge to human operators, exacerbated by overlapping, translucent cargo
[4, 6, 31].

Existing approaches to automated security image analysis focus on the super-
vised! detection of particular classes of threat [11, 12, 14, 15, 32]. However, this
mode of inspection is ineffectual when dealing with mature classes of threat,
for which adversaries have refined effective concealment techniques [8]. Fur-
thermore, these methods may be unable to detect potential threats that have
never been seen before in Stream-of-Commerce (SoC) data. To detect these
concealed or unseen types of threat, customs officers often observe anomalies of
shape, texture, weight, feel or response to perturbation. Inspired by the practice
of customs officers, we are developing algorithms to discover visual anomalies,
in X-ray images, that are historically atypical with respect to expected pat-
terns.

In this work, we investigate an anomaly detection (AD) framework?, at X-
ray image patch-level, for the automated discovery of anomalous regions. The
framework consists of two main components: (i) image representations, and (ii)
the detection of anomalies relative to those representations.

The development of discriminative representations is problematic, since we have
no a priori knowledge of the underlying, generating distribution of anomalies.
Therefore, we pursue representations that have been optimised for a related,
very general, task, on similar® data, which have been found to be useful in pre-
vious works [2, 7, 20, 26, 30]. The representations, for each patch, are then
scored using a forest of random-split trees (FRST), a general-purpose machine
learning AD algorithm. Moreover, we propose to randomly rotate the rep-
resentation space prior to constructing each tree in the FRST, as well as an
alteration to the way in which samples are scored, which empirically improves
performance.

The remainder of this paper is structured as follows. We start by reviewing
related work on supervised and unsupervised approaches to cargo security anal-

n supervised machine learning labelled training data is required, with each training sam-
ple consisting of an input object and a desired output label. The learning algorithm then
infers a function from the labelled data, which can then be used to map novel input samples
to an output label.

2Note, our AD system is strictly constructed on normal data only. In this manner, as
opposed to supervised learning, the task of the learner is to deduce a function that describes
the latent structure of the normal data.

3Similar in the sense that they share the same input space, i.e. pixel space.



ysis, in Section 2. In Section 3, we move on to describing the dataset used in
this work. In Section 4, details of our anomaly detection framework are given.
Preliminary results are presented in Section 5.

2. Related work

At present, there is a scarcity of work directly related to automated AD in
cargo security imagery [23]. Most have focused wholly on supervised learning
for the purpose of automated contents verification or automated threat detec-
tion.

2.1. Automated contents verification

Automated contents verification makes an assessment as to whether the con-
tents of a cargo container are in agreement with its paired shipping manifest.
Research in this area typically spans empty cargo verification [21, 22] and man-
ifest verification [28, 31].

Empty cargo verification is by and large addressed as a supervised binary-
classification problem. Orphan et al. [21] approach this task by first segmenting
an image into different regions and then employing an unnamed rule-based al-
gorithm for object detection to categorise images as either empty or non-empty.
More recent scholarship, by Rogers et al. [22], utilise fixed geometric represen-
tations [19], image moments, and spatial coordinates of sampled windows for
classification.

Manifest verification expands empty cargo verification to a multi-class classi-
fication setting, with the aim of determining to which of a set of Harmonised
Commodity Description and Coding System (HS) codes® a new cargo container
belongs. Tuszynski et al. [28] construct HS code models based on simple inten-
sity histograms of the images, which are then used to compute the Manhattan
distance between a new observation and each model. A significant limitation of
their system lies in its inability to locate small incongruous objects within other-
wise properly declared cargo. Zhang et al. [31] address the lack of texture-based
representations, used by Tuszynski et al. [28], by employing a Leung-Malik filter
bank to build a visual bag-of-words codebook to classify cargo images into 1 of
22 categories.

2.2. Automated threat detection

With reference to automated threat detection, Jaccard et al. [12, 13] undertake
the detection of small metallic threats (SMTs) by utilising automatically learnt

4FEach HS code specifies a broad class of cargo type.



convolutional neural network (CNN) representations, trained on an augmented
dataset, with genuine threat items projected into SoC images. In other work,
Jaccard et al. [11, 14, 15] present methods for classifying image sub-windows
as either car® or non-car, comparing intensity histograms, fixed geometric rep-
resentations, pyramid histogram of visual words (PHOW) representations, and
CNN representations.

2.8. Anomaly detection

Some works have studied the problem of AD. For instance, Zheng & Elmaghraby
[32] attempt to detect anomalous regions within images of vehicles by comput-
ing the window-wise correlation between a new test image of a vehicle to his-
torical windows of the same vehicle. However, the anomalous regions flagged
seldom correspond to actual threats. More recently, we have used AD tech-
niques, based on representations derived from a sparse auto-encoder [1], as well
as transfer learnt CNN representations [2], to perform empty container verifica-
tion on down-sampled images of containers. Impressively, we achieve 99.2% [1]
on this task, which is comparable to the supervised learning result reported by
Rogers et al. [22].

3. Dataset

The dataset used consists of 1.2 x 10° SoC X-ray transmission images of inter-
modal freight shipping containers, obtained from a Rapiscan Eagle®R60 rail
car scanner. The scanner images individual rail cars moving at speeds of up
to 60 kmh~!. Image dimensions depend on the freight container size (typically
20 ft or 40 ft wide) and range from 1290 x 850 to 2570 x 850 pixels. Each image
is stored as a 16-bit greyscale array with a resolution of 5.6 mm pixel ™! in the 2-
axis. Furthermore, all images vary due to small differences in freight containers
and their fixtures, while cargo images also differ in the cargo.

3.1. Image preprocessing

In this work, we will assume that each SoC image has been preprocessed prior
to any representation extraction or classification [14, 22]. This involves: (i)
removal of black stripe artefacts caused by faulty detectors or source misfires;
(ii) normalisation based on air attenuation values to correct for variations in
source intensity and sensor responses; (iii) replacement of isolated erroneous
pixels by the median intensity value of their local neighbourhoods; (iv) and,
binary segmentation to extract the container region from the image. An example
of preprocessing is shown in Fig. 3.1.

5 Aronowitz et al. [3] observe that cars are commonly involved in export fraud and tax
evasion schemes.
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Figure 1: Example of preprocessing: (a) the raw SoC X-ray transmission image, and (b) the
SoC X-ray transmission image having been preprocessed .

3.2. Generation of normal samples

We randomly extract 2 x 10° image patches of size 256 x 256 pixels from the SoC
dataset. These patch-level images form the basis of our training set of normal
samples. See Fig. 3.2 for an example of the types of patches extracted.
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Figure 2: Example of 40 randomly sampled patches from the SoC dataset.

.

3.3. Generation of anomaly samples

For the purposes of evaluating our AD framework, small metallic threat patch
images were synthesised using a threat image projection framework proposed
by Rogers et al. [24]. A full description may be found in [13, 15, 22]. In precis,
the method capitalises on the estimated multiplicative characteristics of X-ray
transmission imagery, and can project 1 of 700 available X-rays of SMTs into
a different image. What is more, the authors show that there is no apparent
visual disparity between an actual threat and a synthetically generated threat,
as illustrated in Fig. 3.3.

Thus, for assessment, SoC image patches of size 256 x 256 were randomly sam-
pled and SMT instances were projected into half of them. Note, there is no
overlap between the training set of normal samples and the testing set of nor-
mal and anomaly samples, with respect to the SoC image backgrounds and the
projected SMTs.
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Figure 3: Example of threat image projection of an electric drill and a pipe bender: (a)
corresponds to a real threat image, and (b) corresponds to a threat image projection.

4. Anomaly detection framework

Our framework is based on two integral components: (i) image representations,
and (ii) the detection of anomalies relative to those representations. We detail
these constituents below.

4.1. Image representations

Below we outline our approaches to representation extraction for the image
patches, which are either intensity-based or CNN-based. These representations
will be the basis on which our AD algorithm is built.

4.1.1. Intensity representations

As a baseline vanilla approach, each input image has its intensity values and its
log-intensity values separately encoded as 256-bin histograms, which are then
concatenated to give a 512-dimensional vector representation.

4.1.2. Convolutional neural network representations

Convolutional Neural Networks (CNNs) obviate the dependency on human
representation-engineering, by offering a versatile method for automatically dis-
covering multiple levels of representation, within raw data, that are extremely
adept when utilised in tasks such as classification [16]. Remarkably, these repre-
sentations are often generic enough that they can be transferred to other vision
tasks and still achieve highly competitive results [7, 20, 26, 30]. Furthermore, we
have found CNN representations to be useful for anomaly detection [2].

ImageNet. We utilise the publicly available pre-trained 19-layered CNN model,
namely VGG-VD-19 [27], to transfer learn representations. The net-
work was trained for the image classification task ILSVRC [25] using



1.2 x 10% colour images of 1 x 10% diverse object categories. High-level
image representations are then extracted from the first fully-connected
layer, FC1.

Cars. Representations were extracted from the first fully-connected layer, F'C'1,
of a pre-trained 19-layered CNN model [14]. The network was trained to
classify patches of the same SoC dataset, aforementioned in Section 3, as
either car or non-car.

Auxiliary. We formulate an auxiliary task so as to transfer learn represen-
tations. We learn representations from scratch, by training a 19-layered
CNN, based on the architecture reported in Jaccard et al. [13], to make dis-
tinctions within the normal class of SoC patches. The CNN was tasked
with determining whether or not two patches were the same. For this
training, the CNN was presented with two patches: (i) labelled +1 if the
two patches were the same (90% overlap), and (ii) a label of —1 if the
two patches were different (0% overlap). See Fig. 4 for an example of
patch pairs. Representations, to be used for AD, were extracted from the
fully-connected layer.

Figure 4: Example pairs used for CNN training on an auxiliary task: (a) two patches from
the SoC dataset with 90% overlap given the label +1, and (b) two patches with 0% overlap
given the label —1.

4.2. Forest of random-split trees anomaly detector

Our aim is to infer a function that describes the hidden structure of the normal
data. The method used here constructs a set of random binary decision trees
to form a forest of random-split trees (FRST), originally proposed by Liu et al.
[17, 18]. Let X = {x1,...,Xn} be a set of N normal training samples, where
x = (q1,...,9p) and ¢;,¢ = 1,..., D are its elementary continuous-valued at-
tributes. Each binary tree randomly splits the data at each node, with atypical
samples tend to be found in shallower leaves of the tree, whereas typical data in



deeper leaves. Ergo, a FRST is constructed under the working assumption that
anomalies are rare and dissimilar, since samples that are more readily separated
from the main body, by randomly chosen criteria, give rise to higher anomaly
scores.

This construction is different to standard supervised decision tree learning,
where each tree is built by selecting the attribute that best splits a labelled
set of training samples. The FRST uses no target labels, and chooses each
attribute and split completely at random.

4.2.1. Forest of random-split trees training

Random-split tree construction. A nodetin a tree T is either a leaf (termi-
nal) node with no children, or an internal node with precisely two children
(tr,tr), with each child connected to its parent by an edge e. For growing
a tree, at each node ¢, a random attribute ¢;+) and a random split value
pt € [min(g;(r)), max(g;r))] are selected, for some attribute index i(t).
The boolean test g;y) < pt, at node ¢, determines which training samples
go to ty, or tg. Top-down binary recursion continues until no further splits
are possible, that is, until all samples have been partitioned into their own
leaf node.

Our first contribution: in the case of randomly selecting an attribute g;(),
at node t, with more than one sample, if min(g;4)) = max(g;)), we
randomly send half of the samples to t;, and the other half to tp. This is
different to the original algorithm [17, 18], where if min(g;¢)) = max(g;())
then the samples cannot be divided and either t;, or tr is empty and the
other is sent all of the samples. We do this to ensure that each tree has
2N — 1 nodes, where N — 1 nodes are internal and N nodes are leaves,
and therefore control the memory requirement.

Forest of random-split tree construction. A FRST is an ensemble of M
random-split trees, F = {T1,...,Ta}, with each tree T constructed on
a random sub-sample X’ C X selected without replacement, such that
N'=|X'| <|X|=N.

The free parameters (M, N') control the FRST. Unless stated otherwise,
we adopt M = 1000 and N’ = N(1 — 1/exp(1)) in our experiments.

Randomly rotated FRST. Our second contribution is a randomly rotated
version of the FRST algorithm:

For each tree, in a FRST, we first select a random sub-sample X’. Prior to
any splitting, a proper rotation matrix R is generated using Householder
QR decomposition [10], such that it is an orthogonal D x D matrix with
det (R) = 1. The representation space, for each tree, can then be rotated,
using R, to give a unique coordinate system, which has been shown to
increase diversity in supervised ensembles of trees [5]. The additional



diversity is a by-product of the rotated tree, as opposed to its unrotated
counterpart, having a very different orientation and vastly dissimilar data
partitions.

Note, for computational efficiency, if D > 1000 then we rotate a random
attribute subset of size D’ = 1000, with each tree utilising a different
random subset for each rotation.

4.2.2. Forest of random-split trees testing

The output of an anomaly detector is used to provide a method in which to
measure the extent to which an unseen test sample is regarded as an anomaly.
Thus, the output should be in the form of a ranked list, which can be attained
by computing the depth of each test sample:

Depth. The depth dr (x) of a sample x is equal to the number of edges it has
to traverse from the root node to end in a leaf node, in tree 7. In the case
of a FRST, we take the average depth of a sample x over all trees in the

1 M
ensemble: 37 > 57, dry (x).

Samples with lower depth values (easier to separate from the training
data) are more likely to be anomalies, than samples with higher depth
values (harder to separate from the training data).

Depth tweak. Our final contribution is an alteration to the way in which
depths are computed:

For each tree T, if a test sample x, at current node ¢ (internal or leaf) of
current depth d;, has a value of ¢; > max (qi(t)), then generate a random
real number r € [min (qi(t)) ,qi]. If » > max (qi(t)), then stop splitting
and assign the test sample a final depth of dr (x) = d; + 1, otherwise
continue descending the tree.

Conversely, if a test sample x, at current node ¢ (internal or leaf) of
current depth d;, has a value of ¢; < min (qi(t)), then generate a random
real number r € [qi,max (qi(t))}. If r < min (qi(t)), then stop splitting
and assign the test sample a final depth of dr (x) = d; + 1, otherwise
continue descending the tree.

The intuition behind this is as follows: if ¢; ¢ [min(qi(t)), max(qi(t))] , then
the further away it lies from the interval the less likely it is to be similar
to the training points that travelled through that node, and as such the
depth tweak is more likely to terminate the traversal of the test sample.

4.2.8. Example: pinched annulus

To qualitatively demonstrate the merits of: (i) randomly rotating the represen-
tation space of each tree, and (ii) the use of the depth tweak, we generate a



pinched annulus dataset of 1 x 10% samples. The results of the different com-
binations are shown in Fig. 5. First, it is readily seen that by rotating the
representation space the axis-alignedness of the contour lines diminishes signifi-
cantly; resulting in a much smoother decision boundary (green curve). Second,
when the depth tweak is applied the decision boundary becomes tighter, as it
penalises points with attribute values ¢; ¢ [min(g;(;)), max(g;(;))] that lie far
away. Finally, the combination of the two gives a decision boundary that is
both smoother and tighter.

Figure 5: Contour plots of the different FRST algorithm variants trained on a 2-dimensional
training set of 1000 samples: (a) FRST; (b) FRST with depth tweak; (c) randomly rotated
FRST; and (d) randomly rotated FRST with depth tweak. Brighter regions correspond to
higher average depth values, and darker regions to lower average depth values. Regions not
contained within the green curves indicate regions below the 5** percentile of the training set
depths, with black dots representing training samples above the 5" percentile and red dots
representing training samples below the 5*" percentile.

4.3. Performance metric

For each FRST, trained on the various image representations (Section 4.1), we
obtain the area under the receiver operating characteristic (AUC) attained on
the fixed test set. The receiver operating characteristic is computed such that
as the discrimination threshold is varied, the errors on the normal and anomaly
data are calculated. In our case, the AUC € [0,1] is equal to the probability
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that the detector will give a randomly selected normal sample a higher depth
value than a randomly selected anomaly sample.

5. Results

Table 1 displays the preliminary AUC results for the different patch-level rep-
resentations, using the FRST as an anomaly detector. We also compared the
performance of the FRST with random rotations and the depth tweak (rr-dt),
to the standard FRST without these options (none).

The AUC, using each representation, is improved when the feature values are
randomly rotated and the depth tweak is applied. Whilst, these are only prelim-
inary results, we believe that our contributions to the original FRST algorithm
are indeed of benefit.

With respect to the representations, the intensity histograms offer an unre-
liable representation and perform just above chance. However, this is to be
expected, since one cannot reasonably expect simple intensity features to be
rich enough encodings for such a difficult and complex task. The auxiliary and
car representations are the first and second best performers, respectively. Their
performance is likely due to the CNNs being trained on SoC X-ray transmission
images, whereas ImageNet is trained on natural images which stem from a very
different distribution. Nonetheless, the ImageNet representation does not lag
too far behind. Consequently, we are encouraged by the results given by the
CNN representations, since they appear to provide far richer representations for
the task of AD than the intensity histogram approach.

Table 1: AUC performance on the AD task using different representations. Note, under the
heading Method: rr-dt denotes random rotation and depth tweak, using the FRST, whereas
none denotes no random rotation or deth tweak.

Representation Method AUC

Intensity none 0.5039
Intensity rr-dt 0.5076
ImageNet none 0.6205
ImageNet rr-dt 0.6270
Cars none 0.6261
Cars rr-dt 0.6307
Auxiliary none 0.6163
Auxiliary rr-dt 0.6365

6. Conclusion

In this work, we presented an anomaly detection framework, at X-ray image
patch-level, for the automated discovery of anomalous regions based on several
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different patch representations. Significantly, our improvements to the FRST
algorithm have proven to be beneficial, particularly when used in combination
with high-level CNN representations.

Future work will focus on how to improve these CNN representations: by eval-
uating different architectures and auxiliary tasks, so as to better define the
concept of normality by learning how to improve discrimination between dif-
ferent types of normal patches. Moreover, the patch-level results will also then
be fused into an overall anomaly heat map of the entire container, to facili-
tate human inspection. In addition, we will evaluate unsupervised methods for
automated FRST free parameter (M, N) selection.

Acknowledgements

This work was supported by the Department for Transport, the Engineering
and Physical Sciences Research Council (EPSRC) under CASE Award Grant
157760, and Rapiscan Systems.

References

[1] Andrews, J. T., Morton, E. J., & Griffin, L. D. (2016). Detecting anomalous
data using auto-encoders. International Journal of Machine Learning and
Computing, 6, 21.

[2] Andrews, J. T. A., Tanay, T., Morton, E. J., & Griffin, L. D. (2016).
Transfer representation-learning for anomaly detection. In ICML 2016,
Anomaly Detection Workshop.

[3] Aronowitz, A. A., Laagland, D., & Paulides, G. (1996). Value-added tax
fraud in the European Union. Kugler publications.

[4] Bagtan, M., Yousefi, M. R., & Breuel, T. M. (2011). Visual words on
baggage x-ray images. In International Conference on Computer Analysis
of Images and Patterns (pp. 360-368).

[5] Blaser, R., & Fryzlewicz, P. (2016). Random rotation ensembles. Journal
of Machine Learning Research, 17, 1-26.

[6] Chen, G. (2005). Understanding X-ray cargo imaging. Nuclear Instru-
ments and Methods in Physics Research Section B: Beam Interactions with

Materials and Atoms, 241, 810-815.

[7] Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., &
Darrell, T. (2014). Decaf: A deep convolutional activation feature for
generic visual recognition. In ICML (pp. 647-655).

12



8]

[9]

[10]

[11]

[18]

[19]

[20]

European Commission (2002). Concealment methods. Good Practice Guide
for Sea Container Control, .

European Commission (2002). Container specifications. Good Practice
Guide for Sea Container Control, .

Householder, A. S. (1958). Unitary triangularization of a nonsymmetric
matrix. Journal of the ACM (JACM), 5, 339-342.

Jaccard, N., Rogers, T. W., & Griffin, L. D. (2014). Automated detection of
cars in transmission x-ray images of freight containers. In Advanced Video
and Signal Based Surveillance (AVSS), 2014 11th IEEFE International Con-
ference on (pp. 387-392). IEEE.

Jaccard, N., Rogers, T. W., Morton, E. J., & Griffin, L. D. (2015). Using
deep learning on X-ray images to detect threats. In: Proceedings Cranfield
Defence and Security Doctoral Symposium, (pp. 1-12).

Jaccard, N., Rogers, T. W., Morton, E. J., & Griffin, L. D. (2016). Auto-
mated detection of smuggled high-risk security threats using deep learning.
arXiw preprint arXiv:1609.02805, .

Jaccard, N., Rogers, T. W., Morton, E. J., & Griffin, L. D. (2016). Detec-
tion of concealed cars in complex cargo X-ray imagery using deep learning.
CoRR, abs/1606.08078.

Jaccard, N., Rogers, T. W., Morton, E. J., & Griffin, L. D. (2016). Tackling
the X-ray cargo inspection challenge using machine learning. In: Proceed-
ings SPIE, 98477, 9847T0N-98470N-13.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521,
436-444.

Liu, F. T., Ting, K. M., & Zhou, Z.-H. (2008). Isolation forest. In
2008 Eighth IEEE International Conference on Data Mining (pp. 413-422).
IEEE.

Liu, F. T., Ting, K. M., & Zhou, Z.-H. (2012). Isolation-based anomaly
detection. ACM Transactions on Knowledge Discovery from Data (TKDD),
6, 3.

Newell, A. J., & Griffin, L. D. (2011). Natural image character recognition
using oriented basic image features. In Digital Image Computing Techniques
and Applications (DICTA), 2011 International Conference on (pp. 191-
196). IEEE.

Oquab, M., Bottou, L., Laptev, I., & Sivic, J. (2014). Learning and transfer-
ring mid-level image representations using convolutional neural networks.
In Proceedings of the IEEE conference on computer vision and pattern
recognition (pp. 1717-1724).

13



[21]

[25]

[26]

[32]

Orphan, V. J., Muenchau, E., Gormley, J., & Richardson, R. (2005). Ad-
vanced v ray technology for scanning cargo containers. Applied radiation
and Isotopes, 63, 723-732.

Rogers, T., Jaccard, N., Morton, E., & Griffin, L. (2015). Detection of
cargo container loads from x-ray images, .

Rogers, T. W., Jaccard, N., Morton, E. J., & Griffin, L. D. (2016). Auto-
mated x-ray image analysis for cargo security: Critical review and future
promise. Journal of X-Ray Science and Technology, (pp. 1-24).

Rogers, T. W., Jaccard, N., Protonotarios, E. D., Ollier, J., Morton, E. J.,
& Griffin, L. D. (2016). Threat image projection (tip) into x-ray images of
cargo containers for training humans and machines. In Proceedings IEEFE
Inter national Carnahan Conference on Security Technology, to appear.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang,
Z., Karpathy, A., Khosla, A., Bernstein, M. et al. (2015). Imagenet large
scale visual recognition challenge. International Journal of Computer Vi-
sion, 115, 211-252.

Sharif Razavian, A., Azizpour, H., Sullivan, J., & Carlsson, S. (2014). Cnn
features off-the-shelf: an astounding baseline for recognition. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops (pp. 806-813).

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556, .

Tuszynski, J., Briggs, J. T., & Kaufhold, J. (2013). A method for automatic
manifest verification of container cargo using radiography images. Journal
of Transportation Security, 6, 339-356.

U.S. Customs and Border Protection (). Container Security Initiative.
Source: https://www.cbp.gov/sites/default/files/documents/csi_
brochure_2011_3.pdf. Accessed: 17-10-2016.

Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding con-
volutional networks. In European Conference on Computer Vision (pp.
818-833). Springer.

Zhang, J., Zhang, L., Zhao, Z., Liu, Y., Gu, J., Li, Q., & Zhang, D. (2014).
Joint shape and texture based X-ray cargo image classification. In IFEFE
Conference on Computer Vision and Pattern Recognition Workshop (pp.
266 — 273).

Zheng, Y., & Elmaghraby, A. (2013). A vehicle threat detection system
using correlation analysis and synthesized x-ray images. In SPIE Defense,
Security, and Sensing (pp. 87090V-87090V). International Society for Op-
tics and Photonics.

14


https://www.cbp.gov/sites/default/files/documents/csi_brochure_2011_3.pdf
https://www.cbp.gov/sites/default/files/documents/csi_brochure_2011_3.pdf

	Introduction
	Related work
	Automated contents verification
	Automated threat detection
	Anomaly detection

	Dataset
	Image preprocessing
	Generation of normal samples
	Generation of anomaly samples

	Anomaly detection framework
	Image representations
	Intensity representations
	Convolutional neural network representations

	Forest of random-split trees anomaly detector
	Forest of random-split trees training
	Forest of random-split trees testing
	Example: pinched annulus

	Performance metric

	Results
	Conclusion

